Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Int J Biol Macromol ; 234: 123672, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36801228

ABSTRACT

This study assessed the alteration of IgE-reactivity and functional attribute in soy protein 7S-proanthocyanidins conjugates (7S-80PC) formed by alkali-heating treatment (pH 9.0, 80 °C, 20 min). SDS-PAGE demonstrated that 7S-80PC exhibited the formation of >180 kDa polymers, although the heated 7S (7S-80) had no changes. Multispectral experiments revealed more protein unfolding in 7S-80PC than in 7S-80. Heatmap analysis showed that 7S-80PC showed more alteration of protein, peptide and epitope profiles than 7S-80. LC/MS-MS demonstrated that the content of total dominant linear epitopes was increased by 11.4 % in 7S-80, but decreased by 47.4 % in 7S-80PC. As a result, Western-blot and ELISA showed that 7S-80PC exhibited lower IgE-reactivity than 7S-80, probably because 7S-80PC exhibited more protein-unfolding to increase the accessibility of proanthocyanidins to mask and destroy the exposed conformational epitopes and dominant linear epitopes induced by heating treatment. Furthermore, the successful attachment of PC to soy 7S protein significantly increased antioxidant activity in 7S-80PC. 7S-80PC also showed higher emulsion activity than 7S-80 owing to its high protein flexibility and protein unfolding. However, 7S-80PC exhibited lower foaming properties than 7S-80. Therefore, the addition of proanthocyanidins could decrease IgE-reactivity and alter the functional attribute of the heated soy 7S protein.


Subject(s)
Proanthocyanidins , Soybean Proteins , Soybean Proteins/chemistry , Heating , Proteomics , Epitopes/chemistry , Immunoglobulin E
2.
Int J Biol Macromol ; 226: 597-607, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36509204

ABSTRACT

This study evaluated the impact of proanthocyanidins on immunoglobulin E (IgE) binding capacity, antioxidant, foaming and emulsifying properties in soy 11S protein following alkali treatment at 80 °C for 20 min. The formation of >180 kDa polymer was observed in the combined heating and proanthocyanidins-conjugation treatment sample (11S-80PC) rather than in the heating treated sample (11S-80) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The structural analyzes demonstrated that 11S-80PC exhibited more protein unfolding than 11S-80. Heatmap analysis revealed that 11S-80PC had more alteration of peptide and epitope profiles in 11S than in 11S-80. Molecular docking showed that PC could well react with soy protein 11S. Liquid chromatography tandem MS analysis (LC/MS-MS) demonstrated that there was a 35.6 % increase in 11S-80, but a 14.5 % decrease in 11S-80PC for the abundance of total linear epitopes. As a result, 11S-80PC exhibited more reduction in IgE binding capacities than 11S-80 owing to more obscuring and disruption of linear and conformational epitopes induced by structural changes. Moreover, 11S-80PC exhibited higher antioxidant capacities, foaming properties and emulsifying activity than 11S-80. Therefore, the addition of proanthocyanidins could decrease allergenic activity and enhance the functional properties of the heated soy 11S protein.


Subject(s)
Proanthocyanidins , Soybean Proteins , Soybean Proteins/chemistry , Immunoglobulin E , Proteomics , Molecular Docking Simulation , Heating , Antioxidants , Epitopes/chemistry
3.
Chembiochem ; 23(20): e202200390, 2022 10 19.
Article in English | MEDLINE | ID: mdl-35950614

ABSTRACT

Accurate formation of antibody-antigen complexes has been relied on in both, multitudes of scientific projects and ample therapeutic and diagnostic applications. Mass spectrometrically determined dissociation behavior of immune complexes with the anti-HpTGEKP antibody revealed that the ten most frequently occurring phospho-hexapeptide linker sequences from C2H2 zinc finger proteins could be divided into two classes: orthodox binders, where strong noncovalent interactions developed as anticipated, and unorthodox binders with deviating structures and weaker binding. Phosphorylation of threonine was compulsory for antibody binding in an orthodox manner. Gas phase dissociation energy determinations of seven C2H2 zinc finger protein linker phospho-hexapeptides with orthodox binding properties revealed a bipolar binding motif of the antibody paratope. Epitope peptides, which in addition to the negatively charged phospho-threonine residue were C-terminally flanked by positively charged residues provided stronger binding, i. e. dissociation was endothermic, than peptides with acidic amino acid residues at these positions, for which dissociation was exothermic.


Subject(s)
Antibodies, Monoclonal , Antigen-Antibody Complex , Zinc Fingers , Mass Spectrometry , Epitopes/chemistry , Peptides/chemistry , Threonine , Amino Acids, Acidic
4.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328351

ABSTRACT

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural and computational studies have also been instrumental in quantifying the structure, dynamics, and energetics of the SARS-CoV-2 spike protein binding with nanobodies. In this review, a comprehensive analysis of the current structural, biophysical, and computational biology investigations of SARS-CoV-2 S proteins and their complexes with distinct classes of nanobodies targeting different binding sites is presented. The analysis of computational studies is supplemented by an in-depth examination of mutational scanning simulations and identification of binding energy hotspots for distinct nanobody classes. The review is focused on the analysis of mechanisms underlying synergistic binding of multivalent nanobodies that can be superior to single nanobodies and conventional nanobody cocktails in combating escape mutations by effectively leveraging binding avidity and allosteric cooperativity. We discuss how structural insights and protein engineering approaches together with computational biology tools can aid in the rational design of synergistic combinations that exhibit superior binding and neutralization characteristics owing to avidity-mediated mechanisms.


Subject(s)
Binding Sites , Molecular Docking Simulation , Molecular Dynamics Simulation , Single-Domain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acids , Antibody Affinity , Epitopes/chemistry , Epitopes/metabolism , Humans , Multiprotein Complexes/chemistry , Mutagenesis , Protein Binding , Protein Engineering , Protein Interaction Domains and Motifs , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Peptides ; 145: 170628, 2021 11.
Article in English | MEDLINE | ID: mdl-34411692

ABSTRACT

About half of the US population is sensitized to one or more allergens, as found by a National Health and Nutrition Examination Survey (NHANES). The most common treatment for seasonal allergic responses is the daily use of oral antihistamines, which can control some of the symptoms, but are not effective for nasal congestion, and can be debilitating in many patients. Peptide immunotherapy is a promising new approach to treat allergic airway diseases. The small size of the immunogens cannot lead to an unwanted allergic reaction in sensitized patients, and the production of peptides with sufficient amounts for immunotherapy is time- and cost-effective. However, it is not known what peptides are the most effective for an immunotherapy of allergens. We previously produced a unique monoclonal antibody (mAb) E58, which can inhibit the binding of multiple groups of mAbs and human IgEs from patients affected by the major group 1 allergens of ragweed (Amb a 1) and conifer pollens (Jun a 1, Cup s 1, and Cry j 1). Here, we demonstrated that a combined approach, starting from two linear E58 epitopes of the tree pollen allergen Jun a 1 and the ragweed pollen allergen Amb a 1, and residue modifications suggested by molecular docking calculations and peptide design could identify a large number of high affinity binding peptides. We propose that this combined experimental and computational approach by structural analysis of linear IgE epitopes and peptide design, can lead to potential new candidates for peptide immunotherapy.


Subject(s)
Anti-Allergic Agents/pharmacology , Antibodies, Monoclonal/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Animals , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Epitopes/chemistry , Epitopes/immunology , Female , Humans , Immunoglobulin E/metabolism , Immunotherapy/methods , Mice, Inbred BALB C , Molecular Docking Simulation , Peptides/immunology , Plant Extracts/immunology , Plant Proteins/chemistry , Plant Proteins/immunology , Pollen/immunology
6.
Biochemistry ; 60(32): 2463-2470, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34319067

ABSTRACT

The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.


Subject(s)
Antibodies, Monoclonal/immunology , Vesicular Glutamate Transport Proteins/immunology , Allosteric Regulation/immunology , Animals , Chlorides/metabolism , Epitopes/chemistry , Epitopes/immunology , Glutamic Acid/metabolism , HEK293 Cells , Humans , Protein Isoforms/immunology , Vesicular Glutamate Transport Protein 1/chemistry , Vesicular Glutamate Transport Protein 1/immunology , Vesicular Glutamate Transport Protein 2/chemistry , Vesicular Glutamate Transport Protein 2/immunology , Vesicular Glutamate Transport Proteins/chemistry , Xenopus laevis
7.
Cells ; 10(5)2021 05 05.
Article in English | MEDLINE | ID: mdl-34063062

ABSTRACT

INTRODUCTION: Parkinson's disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. MATERIAL AND METHODS: Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118-123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. RESULTS: While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118-123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson's disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research.


Subject(s)
Allergens/immunology , Antigen-Antibody Reactions , Dietary Proteins/immunology , Sequence Homology, Amino Acid , alpha-Synuclein/immunology , Allergens/chemistry , Cross Reactions , Dietary Proteins/chemistry , Epitopes/chemistry , Epitopes/immunology , Food , Humans , alpha-Synuclein/chemistry
8.
Food Chem ; 346: 128962, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33418407

ABSTRACT

In this study, the effects of heat treatment on antigenicity, antigen epitopes, and structural changes in ß-conglycinin were investigated. Results showed that the IgG (Immunoglobulin G) binding capacity of heated protein was inhibited with increased temperature, although IgE (Immunoglobulin E) binding capacity increased. Linear antigen epitopes generally remained intact during heat treatment. After heat treatment, ß-conglycinin was more easily hydrolyzed by digestive enzymes, and a large number of linear epitopes was destroyed. In addition, heat denaturation of ß-conglycinin led to the formation of protein aggregates and reduction of disulfide bonds. The contents of random coils and ß-sheet of heated ß-conglycinin decreased, but the contents of ß-turn and α-helix increased. Moreover, the protein structure of heated ß-conglycinin unfolded, more hydrophobic regions were exposed, and the tertiary structure of ß-conglycinin was destroyed. Heat treatment affected the antigenicity and potential sensitization of ß-conglycinin by changing its structure.


Subject(s)
Antigens, Plant/immunology , Epitopes/immunology , Globulins/immunology , Seed Storage Proteins/immunology , Soybean Proteins/immunology , Antigen-Antibody Reactions , Antigens, Plant/chemistry , Antigens, Plant/metabolism , Digestion , Epitopes/chemistry , Globulins/chemistry , Globulins/metabolism , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Unfolding , Seed Storage Proteins/chemistry , Seed Storage Proteins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared
9.
Sci Rep ; 10(1): 7557, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32372058

ABSTRACT

Generation of bispecific antibodies (BsAbs) having two unique Fab domains requires heterodimerization of the two heavy chains and pairing of each heavy chain with its cognate light chain. An alternative bispecific scaffold (Bipod) comprising an scFv and a Fab on a heterodimeric Fc eliminates the possibility of light chain mispairing. However, unpredictable levels of chain expression and scFv-induced aggregation can complicate purification and reduce the yield of desired Bipod. Here, we describe a high-throughput method for generation of Bipods based on protein A and CH1 domain affinity capture. This method exploits over-expression of the scFv chain to maximize heterodimer yield. Bipods purified by this method have purity suitable for cell-based functional assays and in vivo studies.


Subject(s)
Antibodies, Bispecific/chemistry , Immunoglobulin Fab Fragments/chemistry , Protein Engineering/methods , Single-Chain Antibodies/chemistry , Animals , Biological Products/therapeutic use , CHO Cells , Cricetulus , DNA/chemistry , Dimerization , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Epitopes/chemistry , Humans , Immunoglobulin G/genetics , Immunosuppressive Agents/therapeutic use , Mutation , Neoplasms/therapy , Plasmids , Protein Domains
10.
Nat Commun ; 11(1): 1449, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193375

ABSTRACT

Pollen's practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success.


Subject(s)
Materials Science , Microgels/chemistry , Pollen/chemistry , Biomimetics/methods , Computational Chemistry , Epitopes/chemistry , Epitopes/immunology , Esterification , Hardness , Hydrolysis , Hydroxides/chemistry , Microscopy, Fluorescence , Pectins/chemistry , Pectins/immunology , Pollen/immunology , Pollination/physiology , Potassium Compounds/chemistry , Spectroscopy, Fourier Transform Infrared
11.
J Biol Chem ; 295(51): 17398-17410, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33453986

ABSTRACT

Identification of antibody-binding epitopes is crucial to understand immunological mechanisms. It is of particular interest for allergenic proteins with high cross-reactivity as observed in the lipid transfer protein (LTP) syndrome, which is characterized by severe allergic reactions. Art v 3, a pollen LTP from mugwort, is frequently involved in this cross-reactivity, but no antibody-binding epitopes have been determined so far. To reveal human IgE-binding regions of Art v 3, we produced three murine high-affinity mAbs, which showed 70-90% coverage of the allergenic epitopes from mugwort pollen-allergic patients. As reliable methods to determine structural epitopes with tightly interacting intact antibodies under native conditions are lacking, we developed a straightforward NMR approach termed hydrogen/deuterium exchange memory (HDXMEM). It relies on the slow exchange between the invisible antigen-mAb complex and the free 15N-labeled antigen whose 1H-15N correlations are detected. Due to a memory effect, changes of NH protection during antibody binding are measured. Differences in H/D exchange rates and analyses of mAb reactivity to homologous LTPs revealed three structural epitopes: two partially cross-reactive regions around α-helices 2 and 4 as well as a novel Art v 3-specific epitope at the C terminus. Protein variants with exchanged epitope residues confirmed the antibody-binding sites and revealed strongly reduced IgE reactivity. Using the novel HDXMEM for NMR epitope mapping allowed identification of the first structural epitopes of an allergenic pollen LTP. This knowledge enables improved cross-reactivity prediction for patients suffering from LTP allergy and facilitates design of therapeutics.


Subject(s)
Allergens/immunology , Carrier Proteins/immunology , Cross Reactions , Epitopes/chemistry , Immunoglobulin E/immunology , Magnetic Resonance Spectroscopy/methods , Antigens, Plant/immunology , Deuterium/chemistry , Hydrogen/chemistry , Pollen/immunology , Protein Conformation
12.
Infect Genet Evol ; 78: 104106, 2020 03.
Article in English | MEDLINE | ID: mdl-31706079

ABSTRACT

Japanese encephalitis (JE) is a serious leading health complication emerging expansively that has severely affected the survival rate of human beings. This fatal disease is caused by JE Virus (JEV). The current study was carried out for designing a multi-epitope loaded peptide vaccine to prevent JEV. Based on reverse vaccinology and in silico approaches, octapeptide B-cell and hexapeptide T-cell epitopes belonging to five proteins, viz. E, prM, NS1, NS3 and NS5 of JEV were determined. Hydrophilicity, antigenicity, immunogenicity and aliphatic amino acids of the epitopes were estimated. Further, the epitopes were analyzed for different physicochemical parameters, e.g. total net charges, amino acid composition and Boman index. Out of all the epitopes, a total of four T-cell epitopes namely KRADSS, KRSRRS, SKRSRR and KECPDE and one B-cell epitope i.e. PKPCSKGD were found to have potential for raising immunity in human against the pathogen. Taking into account the outcome of this study, the pharmaceutical industries could initiate efforts to combine the identified epitopes together with adjuvant or carrier protein to develop a multi-epitope-loaded peptide vaccine against JEV. The peptide vaccine, being cost effective, could be administered as a prophylactic measure and in JEV infected individuals to combat the spread of this virus in human population. However, prior to administration into human beings, the vaccine must pass through several clinical trials.


Subject(s)
Encephalitis Virus, Japanese/immunology , Japanese Encephalitis Vaccines/immunology , Amino Acids/analysis , B-Lymphocytes/immunology , Epitopes/chemistry , Epitopes/immunology , Immunogenicity, Vaccine , Peptides/immunology , RNA Helicases/immunology , Serine Endopeptidases/immunology , Viral Nonstructural Proteins/immunology
13.
Mol Immunol ; 116: 199-207, 2019 12.
Article in English | MEDLINE | ID: mdl-31731097

ABSTRACT

A 38 kDa ß-1,3-glucanase allergen from Cryptomeria japonica pollen (CJP38) was recombinantly produced in E. coli and purified to homogeneity with the use of Ni-affinity resin. CJP38 hydrolyzed ß-1,3-glucans such as CM-curdlan and laminarioligosaccharides in an endo-splitting manner. The optimum pH and temperature for ß-1,3-glucanase activity were approximately 4.5 and 50 °C, respectively. The enzyme was stable at 30-60 °C and pH 4.0-10.5. Furthermore, CJP38 catalyzed a transglycosylation reaction to yield reaction products with a molecular weight higher than those of the starting laminarioligosaccharide substrates. The three-dimensional structure of CJP38 was determined using X-ray crystallography at 1.5 Å resolution. CJP38 exhibited the typical (ß/α)8 TIM-barrel motif, similar to allergenic ß-1,3-glucanases from banana (Mus a 5) and rubber tree latex (Hev b 2). Amino acid sequence alignment of these proteins indicated that the two-consensus IgE epitopes identified on the molecular surfaces of Mus a 5 and Hev b 2 were highly conserved in CJP38. Their conformations and surface locations were quite similar for these proteins. Sequence and structural conservation of these regions suggest that CJP38 is a candidate allergen responsible for the pollen-latex-fruit syndrome relating to Japanese cedar pollinosis.


Subject(s)
Allergens/chemistry , Antigens, Plant/chemistry , Cryptomeria/chemistry , Pollen/chemistry , Allergens/immunology , Amino Acid Sequence , Antigens, Plant/immunology , Cross Reactions/immunology , Cryptomeria/immunology , Crystallography, X-Ray/methods , Epitopes/chemistry , Epitopes/immunology , Escherichia coli/immunology , Humans , Hydrogen-Ion Concentration , Immunoglobulin E/chemistry , Immunoglobulin E/immunology , Latex/chemistry , Latex/immunology , Musa/chemistry , Musa/immunology , Plant Proteins/chemistry , Plant Proteins/immunology , Pollen/immunology , Rhinitis, Allergic, Seasonal/immunology , Temperature
14.
Sci Rep ; 9(1): 15043, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636285

ABSTRACT

The weed wall pellitory, Parietaria judaica, is one the most important pollen allergen sources in the Mediterranean area causing severe symptoms of hay fever and asthma in allergic patients. We report the expression of the major Parietaria allergens, Par j 1 and Par j 2 which belong to the family of lipid transfer proteins, in insect cells. According to circular dichroism analysis and gel filtration, the purified allergens represented folded and monomeric proteins. Insect cell-expressed, folded Par j 2 exhibited higher IgE binding capacity and more than 100-fold higher allergenic activity than unfolded Escherichia coli-expressed Par j 2 as demonstrated by IgE ELISA and basophil activation testing. IgE ELISA inhibition assays showed that Par j 1 and Par j 2, contain genuine and cross-reactive IgE epitopes. IgG antibodies induced by immunization with Par j 2 inhibited binding of allergic patients IgE to Par j 1 only partially. IgE inhibition experiments demonstrated that insect cell-expressed Par j 1 and Par j 2 together resembled the majority of allergenic epitopes of the Parietaria allergome and therefore both should be used for molecular diagnosis and the design of vaccines for allergen-specific immunotherapy of Parietaria allergy.


Subject(s)
Allergens/metabolism , Antigens, Plant/metabolism , Epitopes/metabolism , Plant Extracts/metabolism , Plant Proteins/metabolism , Recombinant Proteins/metabolism , Adolescent , Adult , Amino Acid Sequence , Biophysical Phenomena , Cell Line , Child , Cross Reactions , Epitopes/chemistry , Escherichia coli/metabolism , Female , Humans , Hypersensitivity/immunology , Immunoglobulin E/immunology , Male , Middle Aged , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Young Adult
15.
J Vis Exp ; (150)2019 08 16.
Article in English | MEDLINE | ID: mdl-31475984

ABSTRACT

The purification of monoclonal antibodies (mAbs) is commonly achieved by Protein A affinity chromatography, which can account for up to 25% of the overall process costs. Alternative, cost-effective capture steps are therefore valuable for industrial-scale manufacturing, where large quantities of a single mAb are produced. Here we present a method for the immobilization of a DsRed-based epitope ligand to a cross-linked agarose resin allowing the selective capture of the HIV-neutralizing antibody 2F5 from crude plant extracts without using Protein A. The linear epitope ELDKWA was first genetically fused to the fluorescent protein DsRed and the fusion protein was expressed in transgenic tobacco (Nicotiana tabacum) plants before purification by immobilized metal-ion affinity chromatography. Furthermore, a method based on activated cross-linked agarose was optimized for high ligand density, efficient coupling and low costs. The pH and buffer composition and the soluble ligand concentration were the most important parameters during the coupling procedure, which was improved using a design-of-experiments approach. The resulting affinity resin was tested for its ability to selectively bind the target mAb in a crude plant extract and the elution buffer was optimized for high mAb recovery, product activity and affinity resin stability. The method can easily be adapted to other antibodies with linear epitopes. The new resins allow gentler elution conditions than Protein A and could also reduce the costs of an initial capture step for mAb production.


Subject(s)
Antibodies, Monoclonal/chemistry , Broadly Neutralizing Antibodies/chemistry , Chromatography, Affinity/methods , HIV Antibodies/chemistry , Immunologic Techniques/methods , Sepharose/chemistry , Epitopes/chemistry , Ligands , Plant Extracts , Plant Proteins , Plants, Genetically Modified , Staphylococcal Protein A , Nicotiana/genetics , Nicotiana/metabolism
16.
Mol Immunol ; 114: 189-195, 2019 10.
Article in English | MEDLINE | ID: mdl-31376732

ABSTRACT

The presence in cypress pollen of an important allergen, belonging to the gibberellin-regulated protein (GRP) family, has been suggested for many years. However, it has never been isolated and sometimes the homologous peach allergen, Pru p 7, has been used as a surrogate to perform immunological investigations. The aim of this study has been the isolation and molecular characterization of the GRP contained in the Cupressus sempervirens pollen. This protein, named Cypmaclein, has been purified from the natural source using conventional biochemical methods consisting in different chromatographic separations. Cypmaclein has been identified by direct protein sequencing of the N-terminal region and of internal fragments of the molecule. In SDS-PAGE, its apparent molecular mass is slightly higher than that of Pru p 7. Nevertheless, the mass spectrometry experiments reveal that the exact molecular mass of Cypmaclein (6821.88 Da) is very close to that of Pru p 7 (6909.90 Da). Two regions of Cypmaclein have been sequenced providing 50% of its primary structure. A high overall sequence identity of Cypmaclein with all the analyzed GRP has been observed, although in the N-terminal region the high identity is limited to the homolog of Cryptomeria japonica. In circular dichroism experiments Cypmaclein produced a spectrum overlapping that of Pru p 7. However, the comparative analysis of Cypmaclein, Pru p 7 and Pun g 7 IgE reactivity revealed a behavior that was not completely overlapping, thus suggesting that the IgE epitopes are only partially shared. In single point highest inhibition achievable assays performed with the FABER test, Cypmaclein efficiently competed with the allergenic peach and pomegranate GRP in the binding of specific IgE of patients sensitized to Pru p 7. In conclusion, the natural cypress pollen GRP has been isolated for the first time, its structural features have been investigated and its cross-reactivity with Pru p 7 and Pun g 7 has been demonstrated. This protein is now available for further investigations aimed at understanding its clinical relevance in the allergy to cypress pollen. In addition, the prevalence of sensitization directly to Cypmaclein, and not limited to the homologs, can be defined.


Subject(s)
Cupressus/chemistry , Cupressus/immunology , Gibberellins/chemistry , Gibberellins/immunology , Immunoglobulin E/immunology , Plant Proteins/chemistry , Plant Proteins/immunology , Adolescent , Adult , Amino Acid Sequence , Antigens, Plant/chemistry , Antigens, Plant/immunology , Child , Cross Reactions/immunology , Epitopes/chemistry , Epitopes/immunology , Female , Humans , Male , Pollen/chemistry , Pollen/immunology , Rhinitis, Allergic, Seasonal/immunology , Young Adult
17.
EBioMedicine ; 39: 33-43, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30581149

ABSTRACT

BACKGROUND: N-linked glycans present in venoms, pollen and mites are recognized by IgE antibodies from >20% of allergic patients but have low or no allergenic activity. OBJECTIVES: To engineer recombinant glycoproteins resembling carbohydrate-specific IgE epitopes from venoms, pollen and mites which can discriminate carbohydrate-specific IgE from allergenic, peptide-specific IgE. METHODS: One or two N-glycosylation sites were engineered into the N-terminus of the non-allergenic protein horse heart myoglobin (HHM) using synthetic gene technology. HHM 1 and HHM 2 containing one or two N-glycosylation sites were expressed in baculovirus-infected High-Five™ insect cells and a non-glycosylated version (HHM 0) was obtained by mutating the glycosylation motif. Recombinant HHM proteins were analyzed regarding fold and aggregation by circular dichroism and gel filtration, respectively. IgE reactivity was assessed by ELISA, immunoblotting and quantitative ImmunoCAP measurements. IgE inhibition assays were performed to study cross-reactivity with venom, plant and mite-derived carbohydrate IgE epitopes. RESULTS: HHM-glycovariants were expressed and purified from insect cells as monomeric and folded proteins. The HHM-glycovariants exhibited strictly carbohydrate-specific IgE reactivity, designed to quantify carbohydrate-specific IgE and resembled IgE epitopes of pollen, venom and mite-derived carbohydrates. IgE-reactivity and inhibition experiments established a hierarchy of plant glcyoallergens (nPhl p 4 > nCyn d 1 > nPla a 2 > nJug r 2 > nCup a 1 > nCry j 1) indicating a hitherto unknown heterogeneity of carbohydrate IgE epitopes in plants which were completely represented by HHM 2. CONCLUSION: Defined recombinant HHM-glycoproteins resembling carbohydrate-specific IgE epitopes from plants, venoms and mites were engineered which made it possible to discriminate carbohydrate- from peptide-specific IgE reactivity.


Subject(s)
Allergens/immunology , Epitopes/immunology , Glycoproteins/chemistry , Hypersensitivity/immunology , Immunoglobulin E/metabolism , Animals , Bees/immunology , Cross Reactions , Epitopes/chemistry , Genetic Engineering , Glycoproteins/immunology , Humans , Mites/immunology , Pollen/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Venoms/immunology , Wasps/immunology
18.
Ecotoxicol Environ Saf ; 165: 202-210, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30196002

ABSTRACT

Aluminum toxicity limits the plant growth by inducing inhibition of root elongation. Although several mechanisms have been proposed regarding the phytotoxic effects of aluminum on inhibition of root elongation; the primary causes of aluminum induced root inhibition and its mitigation by boron (B) are still elusive. The present study was carried out to explore the mechanisms of B induced mitigation of aluminum toxicity and to investigate the changes in well wall structure under aluminum toxicity coupled with the techniques of confocal laser microscope, lumogallion and transmission electron microscope. The results revealed that aluminum toxicity severely hampered the root elongation and plant biomass. Moreover, alteration in subcellular structure were observed under aluminum toxicity, however, such negative effects were further exacerbated with B deficiency. Aluminum toxicity indicated disorganized distribution of HG (homogalacturonan) epitopes with higher accumulation of apoplastic aluminum. Nevertheless, B supply improved root elongation, and reduced the aluminum uptake. Taken together, it is concluded that B application can reduce aluminum toxicity and improve root elongation by decreasing Al3+ accumulation to cell wall, alteration in the cell wall structure and reducing the distribution of HG epitopes in the roots of trifoliate (Poncirus trifoliate) orange.


Subject(s)
Aluminum/chemistry , Boron/pharmacology , Cell Wall/drug effects , Epitopes/chemistry , Plant Roots/drug effects , Poncirus/drug effects , Benzenesulfonates/chemistry , Cell Wall/ultrastructure , Microscopy, Confocal , Pectins/chemistry , Plant Roots/growth & development , Soil/chemistry , Spectroscopy, Fourier Transform Infrared
19.
Mol Immunol ; 99: 1-8, 2018 07.
Article in English | MEDLINE | ID: mdl-29627609

ABSTRACT

Quantitative guidelines to distinguish allergenic proteins from related, but non-allergenic ones are urgently needed for regulatory agencies, biotech companies and physicians. In a previous study, we found that allergenic proteins populate a relatively small number of protein families, as characterized by the Pfam database. However, these families also contain non-allergenic proteins, meaning that allergenic determinants must lie within more discrete regions of the sequence. Thus, new methods are needed to discriminate allergenic proteins within those families. Physical-Chemical Properties (PCP)-motifs specific for allergens within a Pfam class were determined for 17 highly populated protein domains. A novel scoring method based on PCP-motifs that characterize known allergenic proteins within these families was developed, and validated for those domains. The motif scores distinguished sequences of allergens from a large selection of 80,000 randomly selected non-allergenic sequences. The motif scores for the birch pollen allergen (Bet v 1) family, which also contains related fruit and nut allergens, correlated better than global sequence similarities with clinically observed cross-reactivities among those allergens. Further, we demonstrated that the average scores of allergen specific motifs for allergenic profilins are significantly different from the scores of non-allergenic profilins. Several of the selective motifs coincide with experimentally determined IgE epitopes of allergenic profilins. The motifs also discriminated allergenic pectate lyases, including Jun a 1 from mountain cedar pollen, from similar proteins in the human microbiome, which can be assumed to be non-allergens. The latter lacked key motifs characteristic of the known allergens, some of which correlate with known IgE binding sites.


Subject(s)
Allergens/chemistry , Allergens/immunology , Cross Reactions/immunology , Epitopes/chemistry , Epitopes/immunology , Fruit/chemistry , Fruit/immunology , Humans , Immunoglobulin E/chemistry , Immunoglobulin E/immunology , Nuts/chemistry , Nuts/immunology , Plant Proteins/chemistry , Plant Proteins/immunology , Pollen/chemistry , Pollen/immunology , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/immunology , Profilins/chemistry , Profilins/immunology
20.
Physiol Plant ; 164(1): 95-105, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29688577

ABSTRACT

Antibody-based approaches have been used to study cell wall architecture and modifications during the ripening process of two important fleshy fruit crops: tomato and strawberry. Cell wall polymers in both unripe and ripe fruits have been sequentially solubilized and fractions analyzed with sets of monoclonal antibodies focusing on the pectic polysaccharides. We demonstrate the specific detection of the LM26 branched galactan epitope, associated with rhamnogalacturonan-I, in cell walls of ripe strawberry fruit. Analytical approaches confirm that the LM26 epitope is linked to sets of rhamnogalacturonan-I and homogalacturonan molecules. The cellulase-degradation of cellulose-rich residues that releases cell wall polymers intimately linked with cellulose microfibrils has been used to explore aspects of branched galactan occurrence and galactan metabolism. In situ analyses of ripe strawberry fruits indicate that the LM26 epitope is present in all primary cell walls and also particularly abundant in vascular tissues. The significance of the occurrence of branched galactan structures in the side chains of rhamnogalacturonan-I pectins in the context of ripening strawberry fruit is discussed.


Subject(s)
Epitopes/chemistry , Fragaria/metabolism , Fruit/metabolism , Galactans/metabolism , Solanum lycopersicum/metabolism , Cellulose/metabolism , Fragaria/genetics , Fruit/genetics , Galactans/genetics , Solanum lycopersicum/genetics , Pectins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL